

Brief: Harnessing Standards and Regulation to Drive Innovation for Grand Societal Challenges

Syahirah Abdul-Rahman and Serdal Ozusaglam

Oxford Brookes University and University of Warwick

November 2025

Addressing complex grand societal challenges such as climate change, technological transformation, and ethical Al deployment requires a strategic blend of **regulatory frameworks** and **industry standards**. These instruments can guide innovation by providing parameters of information and knowledge, thereby reducing uncertainty and aligning market behaviour with public interest goals. In this brief, we look at empirical academic evidence, blended with policy developments to understand how standards and regulations are used to drive innovation for 3 grand societal challenges: 1) Net zero and environmental sustainability, 2) Advance manufacturing, and 3) Al governance and responsible innovation.

1. Net Zero and Environmental Sustainability

Environmental regulation and standards have proven to be powerful tools in stimulating green innovation. For example, **performance-based emissions regulations** in the automotive and energy sectors have led to increased green patenting and the development of low-carbon technologies (Deng et al., 2024; Rozendaal & Vollebergh, 2021, 2024). In the Netherlands, changes to housing energy performance standards catalysed innovation in sustainable construction (de Vries & Verhagen, 2016).

ISO 14001, an environmental management standard, has been widely adopted across Europe and Asia, promoting eco-innovation and market access (Testa et al., 2014; McGuire, 2014). However, its rigid structure may dampen the positive effects of innovation in some contexts (Valero-Gil et al., 2023).

In parallel, the International Organisation for Standardisation (ISO) is launching its first Net Zero Standard at COP30 in November 2025. Building on the ISO Net Zero Guidelines (IWA 42:2022), the new standard will provide sector-specific pathways and clearer requirements for interim and long-term targets. It is being developed collaboratively by over 170 national standards bodies, including the British Standards Institution (BSI) and ICONTEC (Net Zero Now, 2025). These standards are expected to accelerate global uptake of credible Net Zero strategies, especially when independently verified, and will support businesses in aligning with regulatory frameworks and ESG expectations.

In **China**, environmental regulation has stimulated green technology innovation, particularly in manufacturing (Wang et al., 2022; Liu & Xie, 2020). Meanwhile, **Germany** has leveraged its strong participation in ISO committees to align industrial competitiveness with sustainability goals (Blind, 2019).

2. Advanced Manufacturing

Process and technological standards such as **ISO 9001** (quality management) and **ISO 14001** (environmental management) have long supported incremental innovation, quality assurance, and environmental performance. These standards enable firms to adopt digital technologies like **Industry 4.0**, **Industrial Internet of Things (IIoT)**, and **digital twins**, fostering modularity and supply chain coordination (Manders et al., 2016; Giménez Espín et al., 2023).

Countries like **South Korea** have shown that safety regulations can positively influence innovation, particularly in construction and manufacturing sectors, with firms perceiving regulatory compliance as a driver of technological advancement (Shin et al., 2021). In the **UK**, technology standards have supported incremental innovation in manufacturing but may reduce incentives for radical breakthroughs (Foucart & Li, 2021).

China's approach to environmental regulation in manufacturing has been dualistic—while it has stimulated green patenting, it has also constrained export competitiveness due to regulatory rigidity (Kesidou & Wu, 2020; Liu & Xie, 2020).

Studies have shown that standards and regulation can act as strategic levers for enabling innovation in advanced manufacturing by accelerating technology adoption (for e.g., Faraday Battery Challenge in the UK), ensure interoperability and cybersecurity, and supporting workforce transformation.

3. Al Governance and Responsible Innovation

Al governance presents unique challenges due to its rapid evolution and cross-sectoral impact. **Singapore** has emerged as a global leader in responsible Al governance through its **Model Al Governance Framework**, which promotes transparency, explainability, and human-centric design. This framework relies on **soft law mechanisms**; voluntary standards and co-regulation which allow flexibility while maintaining ethical safeguards (Blind & Münch, 2024).

Singapore has taken a multi-layered and agile approach to Al governance. In 2024, it launched the Model Al Governance Framework for Generative Al (MGF-Gen Al), which consists of nine dimensions that address ethical risks while promoting innovation. The framework was developed by the Al Verify Foundation and the Infocomm Media Development Authority (IMDA), with input from global stakeholders including Microsoft, OpenAl, and the US Department of Commerce (IMDA, 2024)

In the **European Union**, the proposed **AI Act** introduces a risk-based regulatory framework that classifies AI systems and imposes obligations based on their potential impact. This

approach aims to balance innovation with fundamental rights and safety, also found in deep decarbonisation efforts in Europe (Geels et al., 2019).

Canada and **Japan** have adopted national standardisation strategies to strengthen innovation ecosystems, focusing on interoperability and ethical AI deployment (Blind & Mangelsdorf, 2016). For example, Japan's AI governance is rooted in a **soft-law approach**, promoting voluntary compliance through nonbinding guidelines. The country's cultural optimism about AI and its emphasis on "Society 5.0" underpin its preference for agile governance over precautionary regulation. Japan's approach aligns with the OECD AI Principles and supports global cooperation, particularly with the United States (CSIS, 2025). In contrast, **China** has developed indigenous telecom standards to enhance its strategic autonomy, despite limited intellectual property ownership (Yan, 2007).

4. Strategic Integration and Policy Implications

International standards are positively associated with R&D investment and patenting, enhancing global competitiveness and facilitating cross-border collaboration (Blind & Jungmittag, 2008; Blind & Münch, 2024). Conversely, national standards may hinder innovation by creating localised lock-ins and reducing scalability (Mangiarotti & Riillo, 2014).

To maximise impact, policymakers should:

- >> Align standards and regulation with innovation policy to guide technological development toward societal goals.
- >>> Foster public-private partnerships in standard development to ensure relevance and adaptability.
- >>> Promote international harmonisation to reduce trade barriers and support global innovation ecosystems.
- >>> Leverage informal regulation—such as norms and codes of conduct—to complement formal mechanisms and encourage responsible innovation

References

- Blind, K. (2019). Standardization and Standards as Science and Innovation Indicators. In Glänzel, W., Moed, H.F., Schmoch, U., & Thelwall, M. (Eds.), Springer Handbook of Science and Technology Indicators. Springer. https://doi.org/10.1007/978-3-030-02511-3 44
- Blind, K., & Jungmittag, A. (2008). The impact of patents and standards on macroeconomic growth: a panel approach covering four countries and 12 sectors. Journal of Productivity Analysis, 29(1), 51–60.
- Blind, K., & Mangelsdorf, A. (2016). *Motives to standardize: Empirical evidence from Germany. Technovation*, 48, 13–24.
- Blind, K., & Münch, F. (2024). The interplay between innovation, standards and regulation in a globalising economy. Journal of Cleaner Production, 445, 141202. https://doi.org/10.1016/j.jclepro.2024.141202
- CSIS. (2025). Norms in New Technological Domains: Japan's AI Governance Strategy. Center for Strategic and International Studies. https://www.csis.org/analysis/norms-new-technological-domains-japans-ai-governance-strategy
- de Vries, H. J., & Verhagen, W. P. (2016). *Impact of changes in regulatory performance standards on innovation: A case of energy performance standards for newly-built houses. Technovation*, 48, 56–68.
- Deng, Z., Xu, Y., & Zhang, W. (2024). *Green patenting trends in automotive technologies. Journal of Cleaner Production*, 295, 126265. https://doi.org/10.1016/j.jclepro.2024.126265
- Foucart, R., & Li, Q. C. (2021). The role of technology standards in product innovation: Theory and evidence from UK manufacturing firms. Research Policy, 50(2), 104157.
- Geels, F. W., Sovacool, B. K., Schwanen, T., & Sorrell, S. (2019). Sociotechnical transitions for deep decarbonization. Science, 357(6357), 1242–1244.
- Giménez Espín, J. A., Martínez-Blanco, J., & Sánchez-Pérez, M. (2023). *Process standards and organisational learning: Evidence from advanced manufacturing firms. Technovation*, 121, 102657.
- IMDA. (2024). *Model AI Governance Framework for Generative AI*. Infocomm Media Development Authority. https://www.imda.gov.sg/resources/press-releases-factsheets-and-speeches/factsheets/2024/gen-ai-and-digital-foss-ai-governance-playbook
- Kesidou, E., & Wu, H. (2020). *Environmental regulation and green innovation: Evidence from China's manufacturing sector. Journal of Cleaner Production*, 252, 119797.
- Li, S., & Ramanathan, R. (2018). Exploring the relationships between different types of environmental regulations and environmental performance: Evidence from China. Environmental Science & Policy, 81, 51–61.
- Liu, J., & Xie, J. (2020). Environmental regulation, technological innovation, and export competitiveness: An empirical study based on China's manufacturing industry. International Journal of Environmental Research and Public Health, 17(4), 1427.

- Manders, B., de Vries, H. J., & Blind, K. (2016). ISO 9001 and product innovation: A literature review and research framework. Technovation, 48, 41–55.
- Mangiarotti, G., & Riillo, C. A. F. (2014). Standards and innovation in manufacturing and services: the case of ISO 9000. International Journal of Quality & Reliability Management, 31(4), 435–454.
- McGuire, W. (2014). The effect of ISO 14001 on environmental regulatory compliance in China. Ecological Economics, 105, 254–264.
- Net Zero Now. (2025). *New ISO Net Zero Standard Announced*. https://netzeronow.org/post/new-iso-net-zero-standard-announcement
- Newtral. (2025). SBTi Net Zero Standard 2025: Key Revisions for Business. https://newtral.io/blogs/article/sbti-standard-revisions-2025
- Shin, J., Kim, Y., & Kim, C. (2021). The perception of occupational safety and health (OSH) regulation and innovation efficiency in the construction industry: Evidence from South Korea. International Journal of Environmental Research and Public Health, 18(5), 2334.
- Testa, F., Rizzi, F., Daddi, T., Gusmerotti, N. M., Frey, M., & Iraldo, F. (2014). *EMAS and ISO 14001:* the differences in effectively improving environmental performance. Journal of Cleaner Production, 68, 165–173.
- UK Research and Innovation (UKRI). (2025). *Faraday Battery Challenge*. https://www.ukri.org/what-we-do/browse-our-areas-of-investment-and-support/faraday-battery-challenge/
- Valero-Gil, J., Surroca, J. A., Tribo, J. A., Gutierrez, L., & Montiel, I. (2023). *Innovation vs. standardization: Eco-innovation and EMS. Research Policy*, 52(4), 104737.
- Wang, L., Long, Y., & Li, C. (2022). Research on the impact mechanism of heterogeneous environmental regulation on enterprise green technology innovation. Journal of Environmental Management, 322, 116127.
- Wang, Y., & Shao, Q. (2019). Nonlinear effects of informal institutions on environmental regulation and environmental quality. Environmental Science and Pollution Research, 26(8), 7921–7932.
- Yan, H. (2007). The 3G standard setting strategy and indigenous innovation policy in China: Is TD-SCDMA a flagship? DRUID Summer Conference, Copenhagen.

Authors

>>> Syahirah Abdul-Rahman – Oxford Brookes University

Serdal Ozusaglam – University of Warwick

Acknowledgements

This work was supported by Economic and Social Research Council (ESRC) grant ES/X010759/1 to the Innovation and Research Caucus (IRC) and was commissioned by the ESRC. The interpretations and opinions within this report are those of the authors and may not reflect the policy positions of ESRC.

We would also like to acknowledge and appreciate the efforts of the IRC Project Administration Team involved in proofreading and formatting, for their meticulous attention to detail and support.

About the Innovation and Research Caucus

The IRC supports the use of robust evidence and insights in UKRI's strategies and investments, as well as undertaking a co-produced programme of research. Our members are leading academics from across the social sciences, other disciplines and sectors, who are engaged in different aspects of innovation and research system. We connect academic experts, UKRI, IUK and the ESRC, by providing research insights to inform policy and practice. Professor Tim Vorley and Professor Stephen Roper are Co-Directors. The IRC is funded by UKRI via the ESRC and IUK, grant number ES/X010759/1. The support of the funders is acknowledged. The views expressed in this piece are those of the authors and do not necessarily represent those of the funders.

Find out more

Contact: info@ircaucus.ac.uk

Website: https://ircaucus.ac.uk/

Cite as: Abdul-Rahman, S. & Ozusaglam, S. (2025). *Brief: Harnessing Standards and Regulation to Drive Innovation for Grand Societal Challenges*. Oxford, UK: Innovation & Research Caucus

